trendminer_experimental.anomaly_detection.exceptions module¶
The exceptions thrown by the model trainer.
-
exception
trendminer_experimental.anomaly_detection.exceptions.DuplicateVariableNamesException¶ -
Bases:
ExceptionIf duplicates are passed for variables names in a PMML model
-
exception
trendminer_experimental.anomaly_detection.exceptions.NotFittedException¶ -
Bases:
ExceptionThe model is not fitted yet
-
exception
trendminer_experimental.anomaly_detection.exceptions.WrongNumberOfDimensionsException¶ -
Bases:
ExceptionDimension of input dataframe (dim) must be 2<=dim<=10
-
exception
trendminer_experimental.anomaly_detection.exceptions.WrongNumberOfVariableNamesException¶ -
Bases:
ExceptionIf the provided list of variable names does not match the number of variables in the model
-
exception
trendminer_experimental.anomaly_detection.exceptions.WrongValueForThresholdException¶ -
Bases:
ExceptionValue of threshold must be 0<=dim<=1